An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2.

نویسندگان

  • Kameswaran Ravichandran
  • Iram Zafar
  • Zhibin He
  • R Brian Doctor
  • Radu Moldovan
  • Adam E Mullick
  • Charles L Edelstein
چکیده

Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA. In human ADPKD studies, sirolimus, a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, had little therapeutic effect. While sirolimus robustly inhibits mTORC1, it has a minimal effect on mTOR complex 2 (mTORC2). Polycystic kidneys of Pkd2WS25/- mice, an orthologous model of human ADPKD caused by a mutation in the Pkd2 gene, had an early increase in pS6 (marker of mTORC1) and pAktSer(473) (marker of mTORC2). To investigate the effect of combined mTORC1 and 2 inhibition, Pkd2WS25/- mice were treated with an mTOR anti-sense oligonucleotide (ASO) that blocks mTOR expression thus inhibiting both mTORC1 and 2. The mTOR ASO resulted in a significant decrease in mTOR protein, pS6 and pAktSer(473). Pkd2WS25/- mice treated with the ASO had a normalization of kidney weights and kidney function and a marked decrease in cyst volume. The mTOR ASO resulted in a significant decrease in proliferation and apoptosis of tubular epithelial cells. To demonstrate the role of mTORC2 on cyst growth, Rictor, the functional component of mTORC2, was silenced in Madin-Darby canine kidney cell cysts grown in 3D cultures. Silencing Rictor significantly decreased cyst volume and expression of pAktSer(473). The decreased cyst size in the Rictor silenced cells was reversed by introduction of a constitutively active Akt1. In vitro, combined mTORC1 and 2 inhibition reduced cyst growth more than inhibition of mTORC1 or 2 alone. In conclusion, combined mTORC1 and 2 inhibition has therapeutic potential in ADPKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exon Sequencing of PKD1 Gene in an Iranian Patient with Autosomal-Dominant Polycystic Kidney Disease

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrate...

متن کامل

Identification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...

متن کامل

MOLECULAR STUDY OF PKD1 & PKD2 GENES BY LINKAGE ANALYSIS AND DETERMINING THE GENOTYPE/PHENOTYPE CORRELATIONS IN SEVERAL IRANIAN FAMILIES WITH AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE

 ABSTRACT Background: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder with genetic heterogeneity. Up to three loci are involved in this disease, PKDI on chromosome 16p13.3, PKD2 on 4q21, and a third locus of unknown location. Methods: Here we report the first molecular genetic study of ADPKD and the existence oflocus heterogeneity for ADPKD in the Iranian populatio...

متن کامل

Antisense-mediated angiotensinogen inhibition slows polycystic kidney disease in mice with a targeted mutation in Pkd2.

Renal cyst enlargement is associated with the activation of both the circulating and intrarenal renin-angiotensin systems. Angiotensinogen (AGT) is the substrate for renin. The aim of the present study was to determine the effect of AGT inhibition on renal cyst enlargement. An AGT antisense oligonucleotide (ASO) that selectively inhibits AGT mRNA was injected once weekly in PKD2WS25 mice [an or...

متن کامل

Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing

Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long-range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 18  شماره 

صفحات  -

تاریخ انتشار 2014